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Highlights

• A method enabling crystal visco-plasticity to consider realistic rate-sensitivity exponents is developed.
• The method separates constant structure (the exponent) from evolving structure (the activation stress) rate-sensitivity.
• The method within VPSC is applied to simulate strain rate-sensitive deformation of Cu from 10−4/s to 104/s.
• The method does not increase the computation time involved in polycrystal simulations.

Abstract

The plastic deformation of polycrystalline metals is carried by the motion of dislocations on specific crystallographic glide
planes. According to the thermodynamics theory of slip, in the regime of strain rates, roughly from 10−5/s to 105/s, dislocation
motion is thermally activated. Dislocations must overcome barriers in order to move, and this concept defines critical activation
stresses τ s

c on a slip system s that evolve as a function of strain rate and temperature. The fundamental flow rule in crystal

visco-plasticity theory that involves τ s
c in order to activate slip has a power-law form: γ̇ s

= γ̇0


|τ s |
τ s

c

n
sign


τ s. This form

is desirable because it provides uniqueness of solution for the active slip systems that accommodate an imposed strain rate;
however, it also introduces a strain rate dependence, which in order to represent the actual behavior of polycrystalline materials
deforming in relevant conditions of temperature and strain-rate usually needs to be described by a high value of the exponent n.
However, since until now the highest value of n was limited by numerical tractability, the use of the power-law flow rule frequently
introduced an artificially high rate-sensitivity. All prior efforts to correct this extraneous rate sensitivity have only lessened its
effect and unfortunately also at the expense of substantial increases in computation time. To this day, a solution for the power-law
exponent reflecting true material behavior is still sought. This article provides a novel method enabling the use of realistic material
strain rate-sensitivity exponents to be used within the crystal visco-plasticity theory without increasing computation time involved
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in polycrystal simulations. Calculations are performed for polycrystalline pure Cu and excellent agreement with experimental
measurement is demonstrated.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Much of the physics of plastic deformation and the role of dislocation motion in it were known before the
development of crystal plasticity based models. Dislocation glide marks over polished and deformed surfaces
of metallic samples were reported before 1900 [1,2]. It was then concluded that dislocation glide on specific
crystallographic planes and directions lying on those planes and their glide imparts the needed shear to deform the
crystal. It was also observed that not all crystallographically equivalent planes and directions in a crystal were active
during plastic deformation.

Later, the theory of the thermodynamics of slip was developed. It builds on the idea that dislocation motion is
thermally activated in the strain rate ranging roughly from 10−5/s to 105/s [3,4]. The critical stress τ s

c to move
dislocations on an individual system is generally comprised of two components. The first is an intrinsic athermal
stress, representing lattice friction and hence thought not to depend on strain rate within the aforementioned thermally
activated regime. The second is a dislocation-interaction term, which is controlled by overcoming obstacles on the
glide plane, such as other intersecting dislocations, and would generally depend on both strain rate and temperature.
τ s

c depends on chemical composition and evolves as the microstructure within the grain evolves, which includes for
instance, dislocation storage, twinning, and substructure development [5–9]. This rate-sensitive dislocation motion
occurs within every plastically deforming crystal in the polycrystalline aggregate and causes the macroscopic flow
stress–strain response of the polycrystal to depend strongly on the applied stress, strain rate, and temperature of
deformation [10,11]. A current overarching aim of materials modeling is to relate the rate-sensitive motion of
dislocations to the deformation of a crystal or set of crystals when strained at a particular temperature and strain
rate.

An essential and critical part of this modeling effort is the adoption of a sound criterion (or criteria) for activating
crystallographic slip. However, the fact that crystal deformation generally involves slip on more than one slip system
makes this a challenging task. Most pure metals with a face centered cubic crystal structure (e.g., Cu, Ni, Al) deform on
one slip family {111} ⟨110⟩, which contains twelve independently oriented slip systems [12–14]. Metals, such as steel
and most of refractory metals, with a body-centered cubic crystal structure, have two or three families, making up 24
or 48 slip systems [15–19]. Metals with a lower symmetry crystal structure, like hexagonal close packed Mg, Zr, Be,
or Ti metals or orthorhombic U, possess an even larger suite of slip families and systems [20–25]. When plastically
deformed, a crystal accommodates strain using a small subset of these systems. Which systems are activated, how
many, and the distribution of shear among them are collectively referred to as slip activity.

Predicting slip activity is fundamental to be able to predict the reorientations of the crystals and material flow stress
with strain. The theory of crystal plasticity can predict slip activity and relate it to the geometry of crystal deformation;
however, it still requires a separate and basic criterion for activating an individual slip system. All polycrystal plasticity
based constitutive models, ranging from mean-field models, such as the upper bound Taylor model [26], lower bound
Sachs model [27], and the various self-consistent schemes, such as visco-plastic self-consistent (VPSC) [28,29], to the
full-field crystal plasticity finite element (CPFE) [30–33] and Fast Fourier Transform-based (CP-FFT) [34] techniques,
require a criterion for activating a slip system in order to predict slip activity. It is desirable that this criterion captures
the rate sensitive motion of dislocations.

The strain rate and temperature sensitivity of the plastic deformation response of metals can in general
be represented through the flow stress. The strain-rate sensitivity has been shown to be well represented by
several constitutive models that are based on thermal activation kinetics developed by Kocks et al. [13]. One
primary example is the mechanical threshold stress (MTS) model, which is due to the work of Follansbee
and Kocks [35] and has been used in several applications involving dynamic deformation of materials [36,
37], including an extension to crystal plasticity by assigning a MTS to each slip system [38]. In this
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model, the internal state variable, i.e. the MTS, is the deformation resistance at 0 ◦K, and the flow rule
is a combination of log and power law. Other examples treat the rate sensitivity of the material in a
completely general fashion and use other forms for the flow rule, i.e. not necessarily an exponential law or
a power law, and several internal parameters therein are a function of the strain-rate and temperature (e.g.
[39–42]). This more general and flexible dependence comes at the expense of a laborious tabulation of model
parameters from experiments. The new algorithm presented in this paper avoids such time-consuming tabulation,
provided the critical stress dependence with strain-rate can be described by a single stress exponent, which is often a
reasonable assumption.

The criterion adopted by many visco-plastic crystal deformation models is the flow rule that relates the rate of slip
on slip system s to the stress resolved on the slip system plane and direction [43], i.e.,

γ̇ s
= γ̇0

σ ′
· bs

⊗ ns


τ s
c

n

sign

σ ′

· bs
⊗ ns (1)

where ns and bs are the slip plane normal and direction of slip system s, γ̇ s is the slip rate on s, σ ′ is the deviatoric
Cauchy stress tensor, n is the power-law exponent, and τ s

c is the slip resistance for a given microstructural state. We
denote the dot product by “ ·” and the tensor product by “⊗”. The exponent n is the slip system-level equivalent of the
inverse of the strain rate sensitivity parameter m, which represents the dependence of the activation stress on strain
rate for fixed τ s

c , or equivalently, at fixed microstructure. The strain-rate sensitivity of material response m is 1/n with
n defined as the slope of the ln–ln stress–strain rate curve [35,44]:

n =
∂lnε̇

∂ ln σ


ε

. (2)

The value of n depends on material and is established experimentally from flow stresses at different strain rates but
the same microstructural state (e.g., dislocation density storage). For Cu, for instance, the strain rate sensitivity is
approximately m = 0.0025, which is a relatively low value yielding n of 400 [35]. Similarly high n values also
apply to other metals such as brass, aluminum alloys, many steels etc. [44]. While for cubic metals the same n value
can be assigned for all slip systems [43,45], usually n value varies per slip mode for low symmetry metals, which
deform by multiple slip modes [46]. For Mg, for instance, it is widely accepted that basal slip exhibits a very low
strain rate sensitivity of approximately 10−6 while prismatic and pyramidal slip have much higher values 0.0235
and 0.00742, respectively [47–49]. Low-symmetry metals also deform by deformation twinning, whose propagation
is usually considered rate insensitive compared to slip [50]. Note that this rate sensitivity embedded in the rate
sensitivity exponent is in addition to the rate-sensitive evolution of τ s

c , as dictated by the thermodynamics of slip
[4,35].

The power-law form is highly desired as it provides uniqueness in solution that other criteria do not. However,
due to numerical limitations, the exponent n used for example in VPSC or CP-FFT is typically 20. The signifi-
cantly higher n values needed to accurately reflect the actual material strain rate sensitivity at constant microstruc-
ture τ s

c is difficult to obtain while preserving reasonable computational efficiency of the codes. Use of low values
of n introduces an inaccurate coupling between the rate-sensitive macroscopic response and rate-sensitive evolu-
tion of τ s

c . This problem is widely recognized, and as we describe below, over the years, there have been attempts
to resolve it but none of them have been able to achieve values of n representative of actual materials (>100)
[38,44,51].

In this article, we introduce a novel and computationally efficient numerical procedure to allow for a wide range of
values for the exponent reflecting material strain rate-sensitivity m, including extremely low values of 0.001 or as low
as necessary to accurately describe strain rate sensitive flow of polycrystals. Hence, the procedure enables the use of
realistic strain rate sensitivity exponents, which are true visco-plastic properties for polycrystalline metals. The article
provides a brief historical perspective, then develops the method, called the k-modification (k-mod) method, and
ends with demonstration of its utility in a multiscale crystal plasticity constitutive model for the strain rate-sensitive
deformation behavior of polycrystalline Cu, which exhibits a relatively low strain rate-sensitivity and hence large
value of n. Excellent agreement with experimental measurement is shown. This development marks the first time
a polycrystal visco-plasticity model implementation able to represent thermally activated dislocation motion across
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nm–mm length scales in quantitative agreement with a wide range of experimental conditions, without immeasurable,
superfluous strain rate effects entering numerically via the slip activation criterion.

2. Background

2.1. Rate-independent onset of slip criterion

The first criterion developed for activating slip is perhaps still to date the most intuitive one, making the most
physical sense. It is the rate-independent criterion. In 1923, it was postulated that the resolved shear stress has to reach
a critical value τ s

c in order for slip to become active on a particular plane in a particular direction [52]. The concept
was later refined and became known as the Schmid law [53]. This criterion can be expressed as:

γ̇ s
= 0, if

τ s
 < τ s

c (3a)

γ̇ s
≠ 0, if

τ s
 ≥ τ s

c sign

γ̇ s

= sign

τ s (3b)

and represents the activation of slip on a slip system s. We introduce ‘c’ to reflect crystal quantities. The stress measure
τ s

= σ ′c
· ms c is the resolved shear stress on slip system s and ms c

=
1
2 (bs

⊗ ns + ns
⊗ bs) is symmetric portion

of the system’s Schmid tensor. The strain rate tensor for the single crystal, ε̇c
vp, is related to all its active slip systems,

via:

ε̇c
vp =


s

γ̇ sms c
, (4)

where

γ̇ s
= γ̇0 sign


τ s , (5)

where γ̇0 is usually arbitrarily selected as the scaling factor such that ε̇c
vp is similar in value to the macroscopic

viscoplastic strain rate.
This criterion is rate independent since the formulation does not introduce a rate dependency separate from τ s

c .
Because of rate-independency, a constant and fixed τ s

c would result in the same activation stresses for slip for all strain
rates. This criterion still allows for the evolution of the critical threshold τ s

c to depend on strain rate and temperature.
The term “rate-independent” approach is disconnected from the fact that the rate sensitivity of dislocation motion can
still be embodied in τ s

c .
The challenge in using this criterion in crystal plasticity formulations lies in determining how many slip systems are

active in the crystal. With it, multiple combinations of active slip systems can provide the same ε̇c
vp. The most generic

ε̇c
vp can be satisfied with five independent slip systems. The finding of a unique set of five independent slip systems is

difficult for the rate-independent crystal plasticity. To address this challenge, Bishop and Hill proposed the principle
of maximum work [54]. Still, this principle does not alleviate the non-uniqueness in the solution in many cases.

2.2. Rate-dependent onset of slip criterion

The solution to the non-uniqueness problem is found in the field of rate-dependent crystal plasticity and the flow
rule for single-crystal visco-plasticity it employs [43,45,55]. The flow rule uses a power-law form to relate the imposed
resolved shear stress on the dislocation slip system s to its shear rate, as expressed in Eq. (1). The chief advantage
of this flow rule is that it guarantees a unique solution. It leads to a well-posed system of equations when solving for
the number of active slip systems needed to determine the strain rate of the crystal, ε̇c

vp =


s γ̇ sms c, and for the
deviatoric stress state σ ′c, which consists of five independent stress components.

As the name suggests, this criterion is rate-dependent. For constant τ s
c , this slip criterion introduces a rate-sensitive

material response that scales inversely with n. Fig. 1 shows the variation in slip rate according to the visco-plastic
flow rule (1) for different n. Clearly the rate sensitivity introduced by Eq. (1) reduces as n increases. Only in the limit
n → ∞, can this visco-plastic flow rule attain rate-independence.

The problem is that the numerical complexity of finding the solution scales with the power-law exponent n and as a
consequence, the value of n representative of many materials is difficult to achieve numerically. As mentioned earlier,
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Fig. 1. Rate dependence of crystallographic slip as a function of the power-law exponent n.

for most metals, such as Cu and stainless steel, the value of n is significantly greater than 100 [35,36,44,56]. When
n is, for instance, in the range of 1–50, a commonly used set of values in practice today, the Newton–Raphson (NR)
solution procedures rarely encounter convergence issues. Modified NR solvers are needed to reach values of n = 100.
For values of n above 100, however, the use of modified NR solvers is prohibitively computationally intensive as will
be shown later in this paper.

Fig. 1 suggests that using numerically friendly values of n (less than 50) that are less than the actual values (100
or greater) would introduce extraneous rate sensitivity. In fact, the further n deviates below the actual value, the more
significant the error is.

To confirm, we apply the VPSC model with the visco-plastic flow rule Eq. (1) to a polycrystalline Cu [28]. VPSC is
a polycrystal model in which each grain in the polycrystal is treated as a visco-plastic deforming inclusion embedded
in a homogeneous effective medium (HEM) [28]. The mechanics of the inclusion problem is solved using a Green’s
function approach. The viscoplastic properties of the HEM are calculated by enforcing self-consistency between the
macroscopic stress and grain average stresses.

Fig. 2 shows the effect of n on the stress–strain response. In these VPSC simulations, we repeated the simple
compression test at different strain rates from 0.001/s to 10/s for a fixed value of τ s

c . Consequently, no strain rate de-
pendency from τ s

c is present in these simulations and any rate sensitive response derives from the flow rule and its value
of n. In Fig. 2, we show a rate insensitive calculation as a reference,1 since the expectation is that for higher n, these
curves should align closer to this rate insensitive response. As seen in Fig. 2, for n = 10, the rate dependency is sub-
stantial. As n increases from 10 to 50, the rate dependencies decrease dramatically but are still noticeable. Even for n =

100 the curves appear to be close to the rate insensitive response, but yet still exhibit a high strain rate dependencies.
A critical aspect to appreciate is that not only does the computational cost of every call in VPSC increase with n,

but so do the difficulties in obtaining a solution. The calculations shown in Fig. 2 for n = 10 and 50 were carried out
using standard NR schemes. With this approach, however, the solution quickly becomes more difficult beyond n = 50.
Therefore, the calculations shown for n = 100 required a more specialized NR schemes [30,57]. However, even with
this advanced scheme, similar stress–strain curves for n = 400, which would apply to Cu (as we show later), are still
not possible. Solving for the stress given the imposed ε̇c

vp for n higher than 100 results in convergence problems. The
non-linear equations become too stiff and prohibitively challenging. Thus achieving values of n corresponding to the
rate sensitive behavior of actual materials requires adding an additional solution procedure loop, which incrementally
increased n. Here, a solution calculated for a given value of n is used as an initial guess in calculating the next solution
for a higher value of n. This incremental increase of n solution procedure is very computationally intensive. However

1 The rate insensitive response is calculated in VPSC by scaling the shear rates to the norm of the applied strain rate or equivalently by normalizing
the strain rate before calling VPSC to calculate the stress. The stress corresponding to a strain rate of unity is always calculated no matter what
magnitude the applied strain rate is.
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Fig. 2. Effect of n on the room temperature mechanical response of Cu in simple compression as a function of imposed strain rate as indicated in
the figure: (a) n = 10, (b) n = 50, and (c) n = 100. The rate insensitive strain rate corresponds to ε̇vp = 1.0/s.

and as evident from Fig. 2, using values for n less than needed to model real materials leads to an artificially imposed
rate sensitivity.

Introduction of extraneous rate sensitivity via the power-law form Eq. (1) when using non-physically low values
of n is a well-recognized problem. One approach, known as the spectral crystal plasticity can circumvent solving
the power-law equation and instead evaluates the Fourier series summation of spectral coefficients and Fourier basis
[58–61]. The method was found suitable for high-performance computational implementations of crystal plasticity
[62,63].

As already mentioned above, another approach consists of incrementally increasing n to a desired value using an
additional loop. The loop facilitates that the solution for the lower value of n in the prior iteration over a polycrystal
is used as an initial guess for solving for the stress associated with a higher n in the next iteration. Here every crystal
comprising an entire polycrystal is solved for a given value of n. The grain stress solution changes with n. To recog-
nize this scaling of the stress, consider scaling the applied strain rate by λε̇vp while keeping the reference value for the

shear rate, γ̇0, to be constant. The applied strain rate would result in scaling of the grain stress by λ
1
n σ ′c according to:

λε̇c
vp = γ̇0


s

ms c


 λ 1

n σ ′c
· ms c


τc

s

n

sign


λ
1
n σ ′c

· ms c


. (6)

Similarly, the overall polycrystal stress would also be scaled, as illustrated in Fig. 2.
Notably this approach permits reaching solutions for n beyond 100; however, it is not computationally efficient

and not practical for large scale simulations. The time comparisons will be illustrated later in the paper on the poly-
crystalline Cu example using this scheme within VPSC. The results will be shown in Fig. 4(a) for up to n = 400. To
achieve n = 400, stable and efficient increments were established to be n = 50, 100, 150, 200, 250, 300, 350, and 400.

The final approach consists of reducing the rate sensitive response to a rate insensitive one by embedding the norm
of an applied strain rate into γ̇0 [11,38]. This method involves setting the reference shear rate γ̇0, equal to the norm of
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the applied macroscopic strain rate, i.e., γ̇0 =
ε̇vp

. When ε̇vp is applied, the relation between σ ′c and ε̇c
vp follows:

ε̇c
vp =

ε̇vp


s
ms c

σ ′c
· ms c


τc

s

n

sign

σ ′c

· ms c
. (7)

Rate independence is realized when considering another applied strain-rate that scales the given value ε̇vp, say by λ.
Accordingly, the new rate equation in the grain is given by:

λε̇c
vp =

λε̇vp


s
ms c

σ ′c
· ms c


τc

s

n

sign

σ ′c

· ms c
. (8)

Note that λ only changes the magnitude of the applied strain rate and not the sense of loading. Evidently, the stress
σ ′c will remain unchanged provided that τ s

c does not change with strain-rate making the response rate independent.
Scaling the applied strain rate by λε̇vp makes the grain strain rates also scale since

ε̇vp = ⟨ε̇c
vp⟩ → λε̇vp = ⟨λε̇c

vp⟩. (9)

Evidently, the grain stress and the overall polycrystal stress will not scale as long as γ̇0 =
λε̇vp

.
It is worth mentioning that this last approach may introduce a problem if one were to implement it into finite

elements [64–68]. According to this approach, the deviatoric stress, σ ′c, is no longer a function of
ε̇vp

, but a
function of four independent components of the normalized visco-plastic strain rate. Thus, the solution for the five-
component deviatoric stress, σ ′c, contains five dependent deviatoric stress components. Consequently, the Cauchy
stress representing a hyper-surface in six-dimensional stress space required by Abaqus will only have five, not six,
independent components. Difficulties could arise when attempting to solve for the Cauchy stress within the finite
element framework.

3. The k-modification (k-mod) method

In light of the issues introduced by the above methods, it is clear that removing the superfluous rate sensitivity
from the rate-dependent criterion that is introduced with inaccurately low values of n is a long-standing problem still
in need of a solution. In this work, we propose a novel method for solution that allows for a broad range of values for
rate sensitivity, while being computationally efficient.

The method appropriately modifies the applied strain rate at the grain level. We begin by defining a rate-sensitive
macroscopic constitutive function, g, for relating the macroscopic stress, σ ′, and applied macroscopic strain rate, ε̇app

vp ,
via

σ ′
= g(ε̇

app
vp ). (10)

The key idea in the second step involves adjusting the applied strain rate before evaluating the visco-plastic constitutive
function. Specifically in place of the original rate ε̇

app
vp , we use a modified strain rate, ε̇vp, whose norm is the (k + 1)th

root of ε̇
app
vp , i.e.,

ε̇vp =
ε̇

app
vpε̇app
vp
 ε̇app

vp
 1

k+1 . (11)

Note that norms and powers apply only to the values and not to the units. The inverse relationship is given by:

ε̇
app
vp = ε̇vp

ε̇vp
k . (12)

The corresponding macroscopic visco-plastic constitutive function is:

g

ε̇vp


ε̇

app
vp


= g


ε̇

app
vpε̇app
vp
 ε̇app

vp
 1

k+1


= f


ε̇

app
vp

. (13)
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Fig. 3. Effect of k on relaxing the strain rate dependence of grain level response.

The macroscopic stress is evaluated using a different constitutive relationship, f = g◦ ε̇vp, with the applied strain rate,
ε̇

app
vp , which is less strain rate sensitive than the original relationship g in Eq. (10), provided that k > 0. The sign ‘◦’

denotes the composition.

Fig. 3 illustrates Eq. (11), where ε̇vp =
ε̇vp

 is calculated as a function of ε̇
app
vp =

ε̇app
vp
 up to a value of 10,000

/s and k up to a value of 199. These particular calculations are performed for a macroscopic simple compression test
but the plot would look the same for any imposed boundary conditions. The analogy of Eq. (1) at the slip system level
(Fig. 1) and Eq. (11) at the grain level (Fig. 3) can be observed. As k increases, the solution for ε̇vp approaches the
rate independent grain level response, which is another way of obtaining Eq. (8). The full agreement between Eq. (8),
i.e. the strain rate insensitive scaling, and the k-mod will be the case when k → ∞. Here, the applied strain rate would
be a unity. The effect of k on scaling the stress will be explained shortly and illustrated in Fig. 4.

As before, suppose the strain rate is altered to λε̇
app
vp . As a result, the k-mod strain rate ε̇vp changes to λ

1
k+1 ε̇vp.

The grain strain rate as well as the resulting homogenized polycrystal strain rate becomes:

ε̇vp = ⟨ε̇c
vp⟩→λ

1
k+1 ε̇vp = ⟨λ

1
k+1 ε̇c

vp⟩, (14)

where

λ
1

k+1 ε̇c
vp = γ̇0


s

ms c


ms c

· λ
1

(k+1)n σ ′c


τ s
c


n

sign


ms c
· λ

1
(k+1)n σ ′c


. (15)

Eq. (15) shows that the grain stresses and as a result the homogenized macroscopic stress scale according to:

σ ′
= ⟨σ ′c

⟩→λ
1

(k+1)n σ ′
=


1

(k + 1) n
σ ′c

. (16)

The strain rates within the grains scale by
ε̇app

vp
ε̇app

vp
 1

k+1
to ensure that they correspond to ε̇

app
vp , which is evident considering

the following:

⟨ε̇c
vp⟩ = ε̇vp → ⟨ε̇c

vp⟩ =
ε̇

app
vpε̇app
vp
 ε̇app

vp
 1

k+1 →


ε̇c

vp
|

˙ε
app
vp |

|ε̇
app
vp |

1
k+1


= ε̇

app
vp . (17)
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Fig. 4. Relaxing the power-law imposed strain-rate sensitivity of the mechanical response of Cu in simple compression as a function of imposed
strain rate ε̇ =

ε̇vp
 as indicated in the figure by: (a) a combination of n = 50 and k + 1 = 8 and (b) solely n = 400. Note that the scaling in stress

is identical i.e. if the applied strain rate increases 10 times then stress increase according to 10
1

400 σ ′ in both (a) and (b).

Finally, the scaling of ε̇c
vp reflects on the shear rates as follows:
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From Eq. (15), we see that the rate sensitivity is now characterized by both the power-law exponent n and the additional
exponent k. The power-law exponent is now multiplied by k + 1, which has the effect of decreasing the overall rate

sensitivity effect, provided again that k > 0. The grain and macroscopic stresses change by a factor of λ
1

(k+1)n .
Therefore the desired effect is elegantly obtained.

We note that the scaling in Eqs. (6) and (15) is the same. For instance, we can achieve an exponent of 400, either
by n = 400 and k = 0 in Eq. (6) or with n = 50 and k = 7 in Eq. (15), to give (k + 1)n = 400. As a result, any
value of a strain rate sensitivity exponent as the material property can be realized using a combination of n and k. It is
convenient to fix n since it is already incorporated in Eq. (15) and only vary k, thus only Eq. (15) is used to achieve any
desired strain rate sensitivity exponent. Fig. 4 illustrates a particular example comparing the stress–strain response for
the same test at different strain rates using the slip system level power-law for n = 400 (obtained by the incremental
n approach) and the combination of slip system level power-law and grain level k-mod power-law method for n = 50
and k + 1 = 8, which provides a combined power-law exponent of (k + 1)n = 400 as a stress modifier. The actual
stress values from the two approaches in Fig. 4(a) and (b) differ only slightly, within 1% or 2%. This difference is
expected due to numerically solving the slip system power law with a different n value for a given applied strain rate.
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Fig. 5. Computational time involved in solving the visco-plastic equation in simple compression for 400 randomly oriented crystals in (a) Taylor-
type and (b) self-consistent (VPSC) homogenizations. On the left is shown increase in computational time as a function of n. Note that the solutions
for n > 50 is obtained using the slip system level power-law solution methodology with incrementing n in increments of 50. On the right is shown
decrease in computational time involved in solving n(k + 1) = 400 case where n and k are varied as indicated in the figure. Note here that a
compromise of the time involved, accuracy, and numerical stability is achieved using n = 50 and k + 1 = 8.

Importantly, the scaling between stress values with applied strain rates is exactly the same and equal to λ
1

400 σ ′ for

both methods as guaranteed by λ
1
n σ ′ and λ

1
(k+1)n σ ′, respectively. It should be noted that slip system power-law rate

sensitivity characterized by n enters the VPSC solution procedure for stress given the applied strain rate ε̇vp. Due to
the k-mod power-law characterized by k, which is embedded within adjusted ε̇vp, the final strain rate sensitive grain
level stress as well as the overall polycrystal stress is determined by both k and n.

Ultimately, we aim to reduce the rate sensitivity as much as needed without significantly increasing computation
time. In this regard, the significant advantage of the k-mod method in Fig. 4(a) is that it requires substantially less
computation time. Essentially, it does not add any time to solving the slip system power-law with a given value of n.
The computational time to solve for the stress given the strain rate increases with n, but remains constant with increase
in k. To demonstrate this, we return to the same example as shown in Fig. 4 and compare the computation time when
using the incremental n approach and the k-mod method. Fig. 5 shows the results for two types of polycrystal models,
the full constraints Taylor model (Fig. 5(a)) and as before the VPSC model (Fig. 5(b)). The subfigures on the left
show the computation time (in seconds, for simple compression up to −0.2 compressive strain) as a function of n, up
to 400, using only the slip system level power-law. As shown, the computation time exhibits a nearly linear increase
with n. Clearly, obtaining a solution only via the slip system level power-law for n > 100 would be computationally
intensive and not practical. The times are significantly longer in the VPSC scheme versus the Taylor scheme since
for every increment in n (say from n = 100 to n = 150) there are several self-consistent iterations to be solved over
the polycrystal. Therefore, the time increases as a product of the number of self-consistent iterations and increments
in n.

The figures on the right present the computation times for a fixed (k + 1)n = 400 i.e. m = 0.0025. For even low
values of k, such as 1 and 3, the computation time has vastly improved over the slip-system level power-law alone for
the same exponent value of 400. For both polycrystal models, Taylor and VPSC, the best compromise in computation
time, accuracy, and numerical stability is achieved using n ≤ 50. The use of as high as possible n values affects the slip
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system rate sensitivity. However, too high n values result in numerical instabilities and increase the time. Therefore
a good combination of n and k for achieving the strain rate exponent corresponding to m = 0.0025 is for example
n = 50 and k + 1 = 8. More generally, these results clearly show that using k-mod method can cost potentially
much less time than the slip-system level scheme alone. Use of the k-mod method is especially advantageous
for VPSC since the solution procedure needed to achieve self-consistency involves substantially many more
iterations.

It is worth noting that low values of n can cause the slip systems to be active over a relatively wide range of stresses,
making the results smooth with respect to a change in stress. In contrast, high values of n bring the resolved shear
stress closer to the slip resistance for each active system making the range of stresses to reduce and correspond to
a particular slip system. In addition to making the activation threshold sharper, it also makes the direction of strain
rate very sensitive to changes in stress. While the magnitude of strain rate is defined by both n and k, the increase
in k does not affect the relative contribution of deformation systems that are active but only affects the scaling of the
norm of strain rate with the norm of stress. As a result, the direction of strain rate is defined solely by n meaning that
the unrealistic smoothing associated with lower values of n can be present in the k-modification approach. However
smoothing is not expected to cause any appreciable differences in the response and especially in the macroscopic-level
response, as long a sufficiently high value of n is used.

4. Discussion

With the k-mod method developed here, grain level strain rate-sensitivity exponents can span a much broader range
than before with prior methods. Advantageously as low values of rate sensitivity m as necessary can be reached,
enabling the consideration of the true rate sensitivity of materials within crystal plasticity frameworks, without
increasing computation time. Inaccurately low values of n not only are unconnected with the actual material value,
but can also introduce an unwanted relationship between the rate-sensitive activation stresses τc and the rate-sensitive
macroscopic response. With the k-mod method, the rate sensitivity embedded in the evolution of the activation stresses
τc can be propagated faithfully through the length and time scales of a multiscale materials model and the way it affects
the macroscopic response can be analyzed.

To demonstrate the utility of the model, we incorporate the k-mod method into the polycrystal plasticity model
VPSC and apply it to polycrystalline Cu (0.9999 purity). The experimental data used came from Follansbee and
Kocks [10,35], where the material was tested over a wide range of strain rates from 10−4/s to 104/s. Over this range,
they sought to measure the flow stresses corresponding to a fixed microstructural state. This effort involves analyzing
the change in the macroscopic stress with strain rate for material possessing the same internal defect state. In terms
of the model, this translates to holding τc fixed while the applied strain rate varies. In their work, this analysis was
repeated for three microstructural states, corresponding to three different τc. The VPSC model was calibrated to the
experimental data and the following values of τc were obtained: 67, 85, and 103 MPa. In Fig. 6, we compare our
model predictions with their data for different values of k with n = 50. The comparison suggests that for all three
microstructural states, n = 50, k = 7 provides the best agreement, giving an exponent of (k + 1)n = 400 or a strain
rate sensitivity of 0.0025.

This application to polycrystalline Cu can be considered a stringent test of the k-mod method, since this metal
exhibited relatively low rate sensitivity. This case would be extremely difficult to model with a standard polycrystal
model utilizing the power-law visco-plasticity flow rule. With the k-mod method, a single computational call for the
stress–strain solution negligibly adds to the computation time involved at the grain level and thus does not appreciably
increase the overall polycrystal calculations. Such computational efficiency would have been impossible to achieve
with currently available methods.

With the appropriate value of the exponent in hand, we can now model the stress–strain response of Cu. The value
of τc evolves with straining at a rate that depends on temperature and strain rate. The evolution law (or hardening law)
for τc (ε̇,T ) is taken from [69–72] and used in VPSC. The parameters for the hardening law are provided in Table 1
and include the initial friction stress τ0, the trapping rate coefficient k1, the activation barrier for dynamic recovery g,
a drag stress D, dislocation interaction coefficient χ0, and substructure development coefficient q . We refer the reader
to [72] for more details on the hardening model.
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Fig. 6. Achieving the strain-rate sensitivity of Cu using the combination of slip system power-law flow rule and grain scale k-mod power-law
method. The data measured in simple compression at the three pre-strain levels was taken from [35]. The strain rate sensitivity exponent able to fit
the experimental data is determined to be 0.0025. It is achieved through a combination of n = 50 and k = 7. The starting texture was 400 randomly
oriented grains deformed in one deformation step as a function of strain rate with the three different values of τc .

Table 1
Model parameters for evolution of slip resistance for Cu.

τ0 [MPa] k1 [m−1
] g D [MPa] q χ0

10.1 2.2 × 108 0.0167 800 0.14/ε̇0.55 0.81

Fig. 7. Measured and predicted true stress-true strain response for Cu achieved using of n = 50 and k = 7 and the evolution law for slip resistance
as a function of applied strain rate.

Fig. 7 compares the measured and calculated stress–strain response using (k + 1)n = 400. As shown, the model,
using the same set of material parameters in Table 1, is able to capture all three responses and hence the rate sensitive
material behavior.
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5. Conclusions

In this article, we develop a novel method that enables the use of true strain rate sensitivity exponents for
polycrystals within crystal visco-plasticity without increasing computation time involved in polycrystal simulations.
While values of n associated with true visco-plastic properties for polycrystalline metals can range from 102 to 103,
current methods in crystal visco-plasticity are numerically limited to values of n less or equal to 100. Additionally,
the method facilitates true separation of strain rate-sensitivity embedded in the evolution of the activation stress due
to microstructural evolution from the constant structure rate sensitivity embedded in the exponent. To demonstrate the
utility of the new method, called the k-modification method, calculations are performed for polycrystalline pure Cu,
which has a relatively low strain rate sensitivity of m = 0.0025 or equivalently a high exponent value of n = 400.
Excellent agreement with experimental measurement demonstrates that this development is the first time a polycrystal
visco-plasticity model implementation able to represent thermally activated dislocation motion across length scales
in quantitative agreement with a wide range of experimental conditions. This method can be used to model the strain
rate-sensitive behavior for a wide range of metals.
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